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The effect of coupled and uncoupled bending and torsion modes on flexible twin-tail buffet is
considered. This multidisciplinary problem is investigated using three sets of equations on
a multi-block grid structure. The first set is the unsteady, compressible, laminar full
Navier—Stokes equations which are used for obtaining the flow-filed vector and the aerodynam-
ic loads on the twin tails. The second set is the coupled aeroelastic equations which are used for
obtaining the bending and torsional deflections of the twin tails. The third set is the grid-
displacement equations which are used for updating the grid coordinates due to the tail
deflections. The configuration is pitched at 30° angle of attack and the free-stream Mach
number and Reynolds number are 0)3 and 1)25 million, respectively. Keeping the twin tails as
rigid surfaces, the problem is solved for the initial flow conditions. Next, the problem is solved
for the flexible twin-tail responses due to the unsteady loads produced by the vortex breakdown
flow of the delta-wing leading-edge vortex cores. The configuration is investigated for the effect
of coupled and uncoupled bending and torsion modes, using two different separation distances
of the twin-tail; the inboard and the outboard positions. The computational results are in good
agreement with the experimental data. ( 1998 Academic Press
1. INTRODUCTION

TO MAXIMIZE THE EFFECTIVENESS OF FIGHTER AIRCRAFT that operate well beyond the buffet
onset boundary, the design of the new generation of fighter aircraft should account for both
high maneuver capabilities and the aeroelastic buffet characteristics at high and wide range
of angles of attack. The maneuver capabilities are achieved, for example in the F/A-18
fighter, through the combination of a leading-edge extension (LEX) with a delta wing, and
the use of vertical tails. The LEX maintains lift at high angles of attack by generating
a pair of vortices that trail aft, over the top of the aircraft. The vortex entrains air over the
vertical tails to maintain stability of the aircraft. At some flight conditions, the vortices
emanating from the highly swept LEX of the delta wing breakdown before reaching
the vertical tails which get bathed in a wake of unsteady highly turbulent, swirling
flow. The vortex-breakdown flow produces unsteady, unbalanced loads on the vertical
tails and causes a peak in the pressure spectrum that may be tuned to different
structural modes depending on the angle of attack and dynamic pressure. This in turn
produces severe buffet on the tails and has led to their premature fatigue failure. If the
power spectrum of the turbulence is accurately predicted, the intensity of the buffeting
motion can be computed and the structural components of the aircraft can be designed
accordingly.

Experimental investigation of the vertical tail buffet of the F/A-18 models have been
conducted by several investigators, such as Sellers et al. (1988), Erickson et al. (1989), Wentz
(1987), Lee & Brown (1990), and Cole et al. (1990). These experiments showed that the
vortex produced by the LEX of the wing breaks down ahead of the vertical tails at angles of
0889-9746/98/060677#25 $30.00 ( 1998 Academic Press
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attack of 25° and higher, producing unsteady loads on the vertical tails; and the buffet
response occurs in the first bending mode, increases with increasing dynamic pressure and is
larger at M"0)3 than that at higher Mach numbers. Bean & Lee (1994) showed that
buffeting in the torsional mode occurred at a lower angle of attack and at larger levels
compared to the fundamental bending mode. An extensive experimental investigation has
been conducted to study vortex—tail interaction on a 76° sharp-edged delta wing with
vertical twin-tail configuration by Washburn, Jenkins & Ferman (1993). The vertical tails
were placed at nine locations behind the wing. The experimental data showed that the
aerodynamic loads are more sensitive to the chordwise tail location than its spanwise
location. As the tails were moved laterally toward the vortex core, the buffeting response
and excitation were reduced.

Kandil, Kandil & Massey (1993) presented the first successful computational simulation
of the vertical tail buffet using a delta wing-single flexible vertical tail configuration. The tail
was allowed to oscillate in bending modes. Unsteady breakdown of leading-edge vortex
cores was captured, and unsteady pressure forces were obtained on the tail. Later on,
Kandil et al. (1994, 1995) allowed the vertical tail to oscillate in both bending and torsional
modes. The total deflections and frequencies of deflections and loads of the coupled
bending-torsion case were found to be an order of magnitude higher than those of the
bending case only. It has been shown that the tail oscillations change the vortex breakdown
locations and the unsteady aerodynamic loads on the wing and tail.

The buffet responses of twin-tail model has been studied by Kandil, Sheta & Liu (1996).
The twin tails were considered at a"30° and for three different spanwise positions of the
twin tails. A multi-block grid structure was used to solve the problem. The loads, deflec-
tions, frequencies and root bending moments were reduced as the twin tails moved laterally
towards the vortex core. The outboard position of the tails produced the least of these
responses. In a recent paper by Kandil, Sheta & Massey (1997), the buffet response of the
twin-tail model in a turbulent flow was considered at a wide range of angles of attack. The
computational results were in good quantitative agreement with the experimental data of
Washburn et al. (1993).

In this paper, we consider the effect of coupled and uncoupled bending and torsion modes
on the flexible twin-tail buffet response for two different spanwise separation distance of the
twin-tail; the inboard position (33% wing span) and the outboard position (78% wing
span). The computational results are compared with the experimental data of Washburn
et al. (1993).

2. FORMULATION

The formulation consists of three sets of governing equations, along with certain initial and
boundary conditions. The first set is the unsteady, compressible, laminar full Navier—Stokes
equations. The second set consists of the aeroelastic equations for coupled bending and
torsional modes. For uncoupled bending-torsion modes, the distance between the elastic
axis and the inertial axis, xh, is set equals to zero in the aeroelastic equations. The
third set consists of equations for deforming the grid according to the twin-tail deflections.
Next, the governing equations of each set along with the initial and boundary conditions
are given.

2.1. FLUID-FLOW EQUATIONS

The conservative form of the dimensionless, unsteady, compressible, laminar full
Navier—Stokes equations in terms of time-dependant, body-conformed coordinates



BENDING-TORSION RESPONSES OF TWIN-TAIL BUFFET 679
m1, m2 and m3 is given by
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ly. Details of these fluxes are given by Kandil, Kandil & Massey (1993).

2.2. AEROELASTIC EQUATIONS

The dimensionless, linearized governing equations for the coupled bending and torsional
vibrations of a vertical tail that is treated as a cantilevered beam are considered; see Kandil,
Sheta & Massey (1997). The tail bending and torsional deflections occur about an elastic
axis that is displaced from the inertial axis. These equations for the bending deflection, w,
and the twist angle, h, are given by
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where z is the vertical distance from the fixed support along the tail length, l
t
, EI and GJ the

bending and torsional stiffness of the tail section, m the mass per unit length, Ih the
mass-moment of inertia per unit length about the elastic axis, N the normal force per unit
length, M

t
the twisting moment per unit length and xh the distance between the elastic axis

and the inertial axis. When xh"0)0 the bending and torsion modes are dynamically
decoupled. The characteristic parameters for the dimensionless equations are c*, a*
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The solution of equations (4) and (5) is given by
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where /
i
and /

j
are comparison functions satisfying the free-vibration modes of bending

and torsion, respectively, and q
i
and q

j
are generalized coordinates for bending and torsion,

respectively. In this paper, the number of bending modes, I] , is six and the number of torsion
modes, M!I] , is also six. Substituting equations (8) and (9) into equations (4) and (5) and
using the Galerkin method along with integration by parts and the boundary conditions,
equations (6) and (7), we get the following equation for the generalized coordinates q
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where the elements of the mass and stiffness matrices are
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The solution of equation (10), for q
i
, i" 1, 2, 2, I] , and q

j
, j" I]#1, 2, M, is obtained

using the four-stage Runge—Kutta scheme. Next, w, and h are obtained from equations (8)
and (9).

2.3. GRID DISPLACEMENT EQUATIONS

Once w and h are obtained at the n#1 time step, the new grid coordinates are obtained
using interpolation equations. In these equations, the twin tail bending displacements, wn`1

i,j,k
,

and their displacement through the torsion angle, hn`1
i,j,k

are interpolated through cosine
functions. The interpolation equations allow the grid points adjacent to the tail surfaces to
move with the same deflections as those of the tails and keep the grid points at the
computational boundaries fixed.

2.4. BOUNDARY AND INITIAL CONDITIONS

Boundary conditions consist of conditions for the fluid flow and conditions for the
aeroelastic bending and torsional deflections of the twin tail. For the fluid flow, the
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Riemann-invariant boundary conditions are enforced at the inflow and outflow boundaries
of the computational domain. At the plane of geometric symmetry, periodic boundary
conditions are specified. On the wing surface, the no-slip and no-penetration conditions are
enforced and Lp/Ln"0. On the tail surface, the no-slip and no-penetration conditions for
the relative velocity components are enforced (points on the tail surface are moving). The
normal pressure gradient is no longer equal to zero due to the acceleration of the grid points
on the tail surface. This equation becomes Lp/Ln"!oa

t
· n' , where a

t
is the acceleration of

a point on the tail and n' is the unit normal.
The initial conditions of the fluid flow correspond to the free-stream conditions with

no-slip and no-penetration conditions on the wing and tail. For the aeroelastic deflections
of the tail, the initial conditions for any point on the tail are that the displacement and
velocity are zero, w (z, 0)"0, Lw(z, 0) /Lt"0, h(z, 0)"0 and Lh(z, 0) /Lt"0.

3. METHOD OF SOLUTION

The first step is to solve for the fluid flow problem using the vortex-breakdown conditions
and keeping the tail as a rigid beam. The Navier—Stokes equations are solved using the
implicit, flux-difference splitting finite-volume scheme. The grid speed Lmm/Lt is set equal to
zero in this step. This step provides the flow field solution along with the pressure
differences across the tails. The results of this step are used as the initial conditions for the
second step, where the tails are allowed to deflect by turning on equations (4) and (5). The
pressure differences are used to generate the normal force and twisting moment per unit
length of each tail. In the second step, the aeroelastic equations are used to obtain the twin
tail deflections, w

i,j,k
and h

i,j,k
. The grid displacement equations are then used to compute

the new grid coordinates. The metric coefficient of the coordinate Jacobian matrix are
updated as well as the grid speed, Lmm/Lt. This computational cycle is repeated every time
step.

4. COMPUTATIONAL APPLICATIONS AND DISCUSSION

4.1. TWIN TAIL-DELTA WING CONFIGURATION

The twin-tail-delta wing configuration consists of a 76 °-swept back, sharp-edged delta wing
(aspect ratio of one) and dynamically scaled flexible twin tails similar to those used by
Washburn et al. (1993). The vertical tails are oriented normal to the upper surface of the
delta wing and have a centreline sweep of 53)5 °. A multi-block grid consisting of four blocks
is used for the solution of the problem. The first block of a O-H grid for the wing and
upstream region, with 101]50]54 grid points in the wrap around, normal and axial
directions, respectively. The second block is a H-H grid for the inboard region of the twin
tails, with 23]50]13 grid points in the wrap around, normal and axial directions,
respectively. The third block is a H-H grid for the outboard region of the twin tails, with
79]50]13 grid points in the wrap around, normal and axial directions, respectively. The
fourth block is a O-H grid for the downstream region of the twin tails, with 101]50]25
grid points in the wrap around, normal and axial directions, respectively. Figure 1 shows
the three-dimensional grid topology and a front view blow-up of the twin tail-delta wing
configuration.

Each tail is made of a single aluminium spar and Balsa wood covering. The aluminium
spar has a taper ratio of 0)3 and a constant thickness of 0)001736. The chord length at the
root is 0)03889 and at the tip is 0)011667, with a span length of 0)2223. The aluminium spar
is constructed from 6061-T6 alloy with density, o, moduli of elasticity and rigidity, E and G,



Figure 1. Three-dimensional grid topology and blow-up front view of the twin-tail-delta wing configuration (the
tails are in midspan position).

682 O. A. KANDIL AND E. F. SHETA
of 2693 kg/m3, 6)896]1010N/m2 and 2)5925]1010 N/m2, respectively. The corresponding
dimensionless quantities are 2198, 4)595]105 and 1)727]105, respectively.

The Balsa wood covering has a taper ratio of 0)23 and aspect ratio of 1)4. The chord
length at the root is 0)2527 and at the tip is 0)058, with a span length of 0)2223. The Balsa
thickness decreases gradually from 0)0211 at the tail root to 0)0111 at the tail midspan and
then constant thickness of 0)0111 is maintained to the tail tip. The tail cross-section is
a semi-diamond shape with a bevel angle of 20 °. The Balsa density, moduli of elasticity and
rigidity, E and G, are 179)7kg/m3, 6)896]108 N/m2 and 2)5925]108 N/m2, respectively.
The corresponding dimensionless quantities are 147, 4)595]103 and 1)727]103, respec-
tively. The tails are assumed to be magnetically suspended and the leading edge of the tail
root is positioned at x/c"1)0, measured from the wing apex. The configuration is pitched
at 30 ° angle of attack and the free-stream Mach number and Reynolds number are 0)3 and
1)25]106, respectively. The configuration is investigated for two spanwise positions of the
twin tails; the inboard position and the outboard position corresponding to a separation
distance between the twin tails of 33 and 78% of the wing span, respectively.

Keeping the twin tail as rigid surfaces, the unsteady laminar full Navier—Stokes equations
are integrated time-accurately using the implicit, flux-difference splitting scheme of Roe
with a Reynolds number, Re, of 1)25]106 and an angle of attack of 30°. The initial
conditions are obtained after 10 000 time steps with *t"0)001. Next, the results of the
coupled and uncoupled bending and torsion modes are presented. For the coupled bending
and torsion case, the inertial axis is assumed downstream the elastic axis at xh" 0)003. For
thet uncoupled case, xh is set equal to zero.

4.2. UNCOUPLED BENDING-TORSION MODES

Figures 2—7 show the results for the inboard position of the twin tail. Figure 2 shows
three-dimensional views of the leading-edge vortex core particle traces and iso-total pres-
sure surfaces. Figures 3 and 4 show front views of the total pressure contours on the wing
surface and in cross-flow planes at x"1)03 and x"1)22,- and the instantaneous
- It is recalled that all lengths are nondimensionalized with respect to the delta wing root-chord length.



Figure 2. Three-dimensional views showing the total pressure on the surfaces, vortex core particle traces and
iso-total pressure surfaces. Uncoupled case after q"9)6, Inboard position.

Figure 3. Snapshots of total pressure contours on cross-flow planes. Uncoupled case after q"9)6, inboard
position.
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streamlines in cross-flow planes at the same chord stations, respectively. The leading-edge
vortex cores experience asymmetric breakdown upstream of the twin tail due to the
upstream effect of the tails asymmetric motion. The vortices are totally outboard of the twin
tail. The cores are moved upward as the flow travels downstream. Smaller size vortex cores
appear underneath the primary wing vortex and they become larger in size as the flow
travels downstream. These are the tail vortices observed by Washburn et al. (1993). The tail
vortices exist at the outer surfaces of the tails and they are rotating in the opposite direction
to those of the primary wing vortices.

Figure 5 shows the spanwise distribution of the surface-pressure coefficient after 9)6
dimensionless time units from the initial conditions, covering the wing from x"0)3 to
x"1)0. The largest suction peaks are pronounced at the position of the wing vortex cores,
and the peak values decrease as the flow travels down-stream. Low level suction peaks,
corresponding to the secondary separation on the wing, are clearly observed next to the
large level suction peaks.

Figure 6 shows the time history of bending and torsion deflections and load responses for
the left and right tails for 20 dimensionless time units after the initial conditions. It is



Figure 4. Snapshots of instantaneous streamlines on cross-flow planes. Uncoupled case after q"9)6, inboard
position.

Figure 5. Distribution of pressure coefficient. Uncoupled case after q"9)6, Inboard position.
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observed that the two tails deflect in an asymmetric manner. The frequencies of the torsion
deflections are almost twice those of the bending deflections, while the frequencies of the
normal loads are almost the same as those of the twisting moments. The normal forces are
out of phase with the bending deflections, while the twisting moments are in phase with the
torsion deflections.

Figure 7 shows the time history of the leading-edge total structural deflection and the
root bending moment for the left and right tails for 20 dimensionless time units after the
initial conditions. The tail deflections are in first-, second- and third-mode shapes. They are
moving opposite to each other in an asymmetric manner.

Figures 8—13 show the results for the outboard position of the twin tail. Figure 8 shows
three-dimensional views of the leading-edge vortex core particle traces and iso-total pres-
sure surfaces. Figures 9 and 10 show front views of the total pressure contours on the wing
surface and in cross-flow planes at x"1)03 and x"1)22, and the instantaneous streamlines



Figure 6. History of the deflection and load responses for an uncoupled bending-torsion case. M
=
"0)3,

a"30°, Re"1)25]106, inboard position.
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Figure 7. Tail leading-edge total structural deflections and root bending moment for an uncoupled bending-
torsion case. M

=
"0)3, a"30°, Re"1)25]106, inboard position.
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in cross-flow planes at the same chord stations, respectively. The tails cut through the
vortex breakdown flow of the leading-edge vortex cores. The tail vortices are also outboard
of the tails. The location of the vortex core with respect to the tail produces an increase in
the aerodynamic damping, causing the tail deflections to decrease. The tail vortices are also
shown to rotate in the opposite direction to those of the primary wing vortices. Figure 11
shows the spanwise distribution of the surface-pressure coefficient after 9)6 dimensionless
time units from the initial conditions, covering the wing from x"0)3 to x"1)0. The
suction peaks are less than those of the inboard twin-tail position.

Figure 12 shows the time history of bending and torsion deflections and load responses
for the left and right tails for 20 dimensionless time units after the initial conditions. It is
observed that the bending deflections are lower than those of the inboard twin-tail position,
while the torsion deflections are substantially lower than those of the inboard twin-tail
position. Moreover, both the bending and torsion deflections are out of phase of the normal
force and twisting moment loads, in contrast with the case of inboard twin-tail position. The
frequencies of the torsion deflections are almost twice those of the bending deflections, while
the frequencies of the normal loads are almost the same as those of the twisting moments.
However, the frequencies of the bending and torsion deflections are higher than those of the
inboard twin-tail position.



Figure 8. Three-dimensional views showing the total pressure on the surfaces, vortex core particle traces and
iso-total pressure surfaces. Uncoupled case after q"9)6, outboard position.

Figure 9. Snapshots of total pressure contours on cross-flow planes. Uncoupled case after q"9)6, outboard
position.

Figure 10. Snapshots of instantaneous streamlines on cross-flow planes. Uncoupled case after q"9)6, outboard
position.
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Figure 11. Distribution of pressure coefficient. Uncoupled case after q"9)6, outboard position.
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Figure 13 shows the time history of the leading-edge total structural deflection and the
root bending moment for the left and right tails for 20 dimensionless time units after the
initial conditions. The levels of loads and deflections are much lower than those of the
inboard twin-tail position. The tails are shown to oscillate in one direction only, in the first-
and second-mode shapes.

4.3. COUPLED BENDING-TORSION MODES

Figures 14—20 show the results for the inboard position of the twin tail. Figure 14 shows
three-dimensional views of the leading-edge vortex core particle traces and iso-total pres-
sure surfaces. Figures 15 and 16 show front views of the total pressure contours on the wing
surface and in cross-flow planes at x"1)03 and x"1)22, and the instantaneous streamlines
in cross-flow planes at the same chord stations, respectively. Although, the vortex break-
down axial location is approximately at the same position as that of the uncoupled case, the
shape and traces of the breakdown flow are different which show the upstream effect of the
twin-tail motion. The vortex cores are moved more upward than those of the uncoupled
case and continue moving upward as the flow travels downstream.

Figure 17 shows the spanwise distribution of the surface-pressure coefficient after 9)6
dimensionless time units from the initial conditions, covering the wing from x"0)3 to
x"1)0.

Figures 18 and 19 show the time history of bending and torsion deflections and load
responses for the left and right tails for 60 dimensionless time units after the initial
conditions. The tail deflections and levels of loads are higher than those of the uncoupled
case. However, the frequencies of the bending and torsion deflections, normal forces and
twisting moments are the same as those of the uncoupled case. The normal forces are out of
phase with the bending deflections, while the twisting moments are in phase with the torsion
deflections.

Figure 20 shows the time history of the leading-edge total structural deflection and the
root bending moment for the left and right tails for 60 dimensionless time units after the
initial conditions. The tail deflections are in first-, second- and third-mode shapes. The two
tails are moving opposite to each other in asymmetric manner.



Figure 12. History of the deflection and load responses for an uncoupled bending-torsion case. M
=
"0)3,

a"30°, Re"1)25]106, outboard position.
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Figure 13. Tail leading-edge total structural deflections and root bending moment for an uncoupled bending-
torsion case. M

=
"0)3, a"30°, Re"1)25]106, outboard position.

Figure 14. Three-dimensional views showing the total pressure on the surfaces, vortex core particle traces and
iso-total pressure surfaces. Coupled case after q"9)6, xh"0)003, inboard position.
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Figures 21—27 show the results for the outboard position of the twin tail. Figure 21 shows
three-dimensional views of the leading-edge vortex cores particle traces and iso-total
pressure surfaces. Figures 22 and 23 show front views of the total pressure contours on the
wing surface and in cross-flow planes at x"1)03 and x"1)22, and the instantaneous



Figure 15. Snapshots of total pressure contours on cross-flow planes. Coupled case after q"9)6, xh"0)003,
inboard position.

Figure 16. Snapshots of instantaneous streamlines on cross-flow planes. Coupled case after q"9)6, xh"0)003,
inboard position.

Figure 17. Distribution of the pressure coefficient. Coupled case after q"9)6, xh"0)003, inboard position.
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Figure 18. History of the bending deflection and load responses for coupled bending-torsion case, xh"0)003. M
=
"0)3, a"30°, Re"1)25]106, inboard position.
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Figure 19. History of the torsion deflection and load responses for coupled bending-torsion case, xh"0)003. M
=
"0)3, a"30°, Re"1)25]106, inboard position.
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Figure 20. Tail leading-edge total structural deflections and root bending moment for coupled bending-torsion case, xh"0)003. M
=
"0)3, a"30°, Re"1)25]106,

inboard position.
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Figure 21. Three-dimensional views showing the total pressure on the surfaces, vortex core particle traces and
iso-total pressure surfaces. Coupled case after q"9)6, xh"0)003, outboard position.

Figure 22. Snapshots of total pressure contours on cross-flow planes. Coupled case after q"9)6, xh"0)003,
outboard position.

Figure 23. Snapshots of instantaneous streamlines on cross-flow planes. Coupled case after q"9)6, xh"0)003,
outboard position.
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Figure 24. Distribution of coefficient of pressure. Coupled case after q"9)6, xh"0)003, outboard position.
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streamlines in cross-flow planes at the same chord stations, respectively. The shape of the
vortex breakdown is slightly different than that of the uncoupled case. This is because of the
lower levels of the tail deflections which reduce the upstream effect on the flow.

Figure 24 shows the spanwise distribution of the surface pressure coefficient covering the
wing from x"0)3 to x"1)0.

Figures 25 and 26 show the time history of bending and torsion deflections and load
responses for the left and right tails for 60 dimensionless time units after the initial
conditions. The tail deflections and levels of loads are higher than those of the uncoupled
bending-torsion case of the outboard twin-tail position but still much lower than those of
the uncoupled and coupled bending-torsion cases of the inboard twin-tail position. The
bending and torsion deflections are out of phase of the normal force and twisting moment
loads. The frequencies of the bending and torsion deflections are the same as those of the
uncoupled bending-torsion case of the outboard twin-tail position but higher than those of
the uncoupled and coupled bending-torsion cases of the inboard twin-tail position.

Figure 27 shows the time history of the leading-edge total structural deflection and the
root bending moment for the left and right tails for 60 dimensionless time units after the initial
conditions. The tails are deflected in one direction only in first- and second-mode shapes.

Table 1 shows the comparison of the present code (FTNS3D) results with those of
Washburn et al. (1993) experimental data, of the mean root bending moment for flexible
twin tails, the root-mean-square root bending moment for flexible twin tails and the lift
coefficient with rigid twin tails. The computational results for both coupled and uncoupled
bending and torsion modes agree well with Washburn’s experimental data. The discrepan-
cies in the results are attributed to the fact that the computational model has some
differences from Washburn’s experimental model. Our wing is a flat plate with zero
thickness, while Washburn’s wing is a Hummel-type wing (triangular cross-section). Al-
though the tail shape is the same, our model assumed magnetically suspended solid material
tails, while the Washburn tails are constructed with spars, additional ballast weights and
void spaces in the tails. Our computational model assumed flexible twin-tail, while Wash-
burn’s experimental model involved one tail flexible and the other tail rigid. In the
experimental work by Washburn et al. (1993), the presence of a flexible tail was found to
affect the loads and pressures on the other rigid tail.



Figure 25. History of the bending deflection and load responses for coupled bending-torsion case, xh"0)003. M
=
"0)3, a"30°, Re"1)25]106, outboard position.
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Figure 26. History of the torsion deflection and load responses for coupled bending-torsion case, xh"0)003.
M

=
"0)3, a"30°, Re"1)25]106, outboard position.
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Figure 27. Tail leading-edge total structural deflections and root bending moment for coupled bending-torsion case, xh"0)003. M
=
"0)3, a"30°, Re"1)25]106, outboard

position.
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TABLE 1

Validation of FTNS3D uncoupled and coupled computational results with Washburn et al. (1993)
experimental data

Parameter Position FTNS3D FTNS3D WASHBURN
uncoupled coupled

Mean-root bending moment Inboard 0)1626 0)155 0)145
with flexible tails Outboard 0)107 0)115 0)135
R.m.s. root bending moment Inboard 0)042 0)064 0)024
with flexible tails Outboard 0)011 0)01365 0)015
Lift coefficient Inboard 1)0423 1)0411 1)10
with rigid tails Outboard 1)07 1)055 1)10
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5. CONCLUDING REMARKS

The effect of coupled and uncoupled bending and torsion modes on the twin-tail buffet
response are investigated for different spanwise positions of the twin-tail. The coupled
bending and torsion modes produce higher deflections and loads than those of the
uncoupled mode cases. The inboard position of the twin-tail produces the largest bending
and torsion loads and deflections when compared with the results of the outboard position.
The frequencies of the bending and torsion loads and deflections in the case of outboard
twin-tail position are higher than those of the inboard position. The frequencies of the
torsion deflections are twice those of the bending deflections. It has been shown that the
larger the tail deflections are, the higher the upstream effect is on the vortex breakdown flow
upstream of the tails. The computational results presented are in good quantitative
agreement with the experimental data of Washburn et al. (1993).
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